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PEFTC The Performance Evaluation

Research Center (PERC)

= An “Integrated Software Infrastructure Center” (1ISIC)
sponsored under DoE’s SciDAC program.

= Funding: approx. $2.4 million per year.
= Mission:
= Develop a science of performance.

= Engineer tools for performance analysis and
optimization.

= Focus:

= Large, grand-challenge calculations, especially
SciDAC application projects.



=

PERC Benefits to Computing Centers

Consider the economic value of improving the
performance of a single high-end scientific
application code by 20%.

Assume:

= $10 million computer system lease cost per year.

= $10 million per year in site costs, support staff, etc.
= 10-year lifetime of code.

= Code uses 5% of system cycles each year.

Savings: $2,000,000.

Scientific benefit (additional computer runs and
research) is probably much higher.



PERC Benefits to Vendors

= Large labs (like NERSC) rely heavily on commercial
vendors for high-performance computer systems.

= We are invited by vendors to provide guidance on the
detailed design of future systems.

BUT

= At present we can provide only vague information —
little If any quantitative data or rigorous analysis.

The performance monitoring and modeling capability
being developed in PERC will significantly improve
our ability to influence future computer systems.



PERC Performance Monitoring

= Flexible instrumentation systems to capture:
= Hardware phenomena
= |nstruction execution frequencies
= Memory reference behavior
= Execution overheads
= An advanced data management infrastructure to:
= Track performance experiments.
= Collect data across time and space.

= User-friendly tools to tie performance data to user’'s
source code.



Performance Modeling

= Application signature tools characterize applications
Independent of the machine where they execute.

= Machine signature tools characterize computer
systems, independent of the applications.

= Convolution schemes combine application and
machine signatures to provide accurate performance

models.
= Other performance modeling approaches:
= Statistical models.
= Phase models.
= Performance bounds.



PERC Performance Optimization

= Compile-time optimization mechanisms analyze
source code to improve performance.

= Self-tuning software automatically tunes code based
on real-time measurements of hardware
environment.

= Performance assertions permit user-specified run-
time tests to possibly change the course of the
computation depending on results.

= Performance portability programming techniques to
Insure that code runs at near-optimal performance
across a variety of modern systems.



V)
V)
D
(@)
(@)
<L
N
— ()
==
T £
= ©
- O
()
| -
-
V)
!
O
=

MAPS Alpha 21264

10ssao0ud JJo

oul|
Aeme moluyy ‘wopuel

g apuIs

aul|
ayoed asn ‘wopuel

aul|
ayoed asn g apus

aul|
ayoed asn T apuIs

21 puub

Z1/T1 [e21]9AD

T puub

771 pulb




PERC  SvPablo Graphical Interface
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PERC PAPI Perfometer Interface
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PEI;C Performance Signature Modeling

[A. Snavely, SDSC]

# CPUs Real Time Predicted Time % Error
2 31.78 31.82 0.13
4 29.07 31.27 7.57
8 36.13 33.72 6.67
64 44.91 43.91 2.23
96 48.87 47.15 3.52
128 52.88 52.46 0.79




Climate Code Performance

Improvement [P. worley, ORNL]
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Scalable Benchmarking

[LBNL/NERSC]

= Approach: Define a benchmark that automatically
assesses performance over a broad range of relative
distances between successive memory accesses.

= Feature: Independent of any particular cache
structure or architecture.

= Result: A function graph of performance versus
locality.

= Currently being developed by E. Strohmaier at LBNL.



Effective System Performance

PERC (ESP) Test [LBNL /NERSC]

= Analyzes system-level performance:

= Efficiency of job scheduling system, applied to a mix
of both small and large jobs.

= Network contention in a fully-utilized system.
= Job start-up times.

= Time required for reboots (for example when
restarting from regularly scheduled maintenance).

= Objective: Run a defined workload of varying system
sizes in the best time possible, compared to the total
capacity of the system.

= Measured scores range from 60% to 85%.



Sustained System Performance
(SSP) Test [LBNL/NERSC]

PERC

= Developed at LBNL/NERSC for procurements.

= Defines sustained performance as the average
performance of a suite of user application codes on
say 256 CPUs.

= Defines sustained system performance by linear
scaling to the total number of processors.

= Procurement SSP: Maximize the integral of SSP,
measured at monthly intervals, over the lifetime of the
contract.

= Provides strong value to the center.

= Provides flexibility to the vendor in meeting its
contractual requirements.



PER-C Looking to the Future:

The Massively Parallel Challenge

Systems featuring 10,000+ CPUs, present daunting
challenges for performance analysis and tools:

= What performance phenomena should we measure?

= How can we collect and manage performance data
spewed out by tens of thousands of CPUs?

= How can we visualize performance phenomena on
10,000+ CPUs?

= How can we identify bottlenecks in these systems?

Solution: Intelligent, highly automated performance
tools, applicable over a wide range of system sizes
and architectures, are needed.



Looking to the Future:
Benchmarking and Modeling

PERC

= How can a center meaningfully procure a system with
10,000+ CPUs, a system 10 to 100 times more
powerful than any system currently in existence?

= How can we define a benchmark that provides
meaningful results for systems spanning four orders
of magnitude in size?

= Reliable performance modeling techniques, usable
with modest effort and expertise, offers the best hope
for an solution here.



Looking to the Future:

System Simulation

= “Computational scientists have become expert in
simulating every phenomena except for the systems
they run on.” -- Speaker at Salishan 2003.

= System simulations heretofore have been used
sparingly in system studies, because of the great cost
and difficulty in parallelization of such simulations.

= Such simulations are now feasible, due to:
= Availability of large-scale parallel systems.

= Developments in the parallel discrete event simulation
field.



Looking to the Future:
User-Level Automatic Tuning

PERC

= Self-tuning software technology has already been
demonstrated in a few large-scale libraries:
= FFTW (MIT).
= LAPACK-ATLAS (Univ. of Tennessee).

= Near term: Adapting these techniques to a wider
group of widely used scientific libraries.

= Mid term: Automatically incorporate simple
performance models into user application codes.

= Future goal: Automatically incorporate simple run-
time tests, using compiler technology, into user
application codes.



Working with PERC

For further information:

http://perc.nersc.gov




